$V_i = 0$

 $V_f = 40$

d = ?

a = 4

t = -

 $V_i = 0$

V_iV_fDat Problems is Where It's At

- A bobsled has a constant acceleration of 4.0 m/s² starting from rest. 1.
 - After 5.00 seconds how far has it gone?

 $V_{\mathbf{f}} =$ d=? 50 a=4.0 4.0 5.0

V = ?

After 5.00 seconds how fast is it traveling?

What is the average velocity during the first 5.00 seconds?

$$\sqrt{\frac{1}{2}} = \frac{10 \text{ m/s}}{2}$$
 $\sqrt{\frac{1}{2}} = \frac{10 \text{ m/s}}{2}$
 $\sqrt{\frac{1}{2}} = \frac{10 \text{ m/s}}{2}$
 $\sqrt{\frac{1}{2}} = \frac{10 \text{ m/s}}{2}$
How far has it traveled by the time its velocity is 40.0 m/s?

$$V_f^2 = Y_1^2 + 2ad$$
 $8d = 1600$
 $40^2 = 2(4)d$ $d = 200m$

2. A Porsche, initially traveling at a uniform velocity, accelerates at a rate of 12 m/s² for a period of 5.0 seconds. If the car traveled 200.0 m during this 5.0 s period, what was the velocity of the Porsche before it started to accelerate?

nat was the velocity of the Porsche before it started to accelerate?

$$\begin{array}{lll}
V_f = * \\
V_f =$$

3. An arrow, after being pulled back, was accelerated over a distance of 0.8 m in the bow. If its speed at the moment it left the bow was 60.0 m/s what is the acceleration imparted by the bow? (Hint: Look at the picture below. The arrow is going from the left bow picture to the right one).

- 4. A train started from rest and moved with a constant acceleration. At one time, it was traveling 10 m/s. 50 m further down the track it was going 16 m/s.
- $V_i = 10$ $V_{\mathbf{f}} = 1$

Calculate the acceleration.

256 = 100 + 100a

We are looking @ the time from
$$10m/s \rightarrow 16m/s$$

$$V_f^2 = V_i^2 + 2ad \qquad 100a = 156$$

$$16^2 = 10^2 + 2(a)(50) \qquad a = 1.56m/s^2$$

d = 5a = ? t = *

b. Find the time required to travel the 50 m mentioned.

$$V_f = V_i + at$$
 $1.56t = 6$
 $16 = 10 + 1.56t$
 $t = 3.85$ Sec

Find the time required to reach 10 m/s from rest.	$V_i = \Delta$
acceleration is same as above but	i
V; = 0 & Vf = 10 t = 10/1.56 = 6.41 sec	$V_f = 10$
Vf: 1,+at t= 71.56 - 6.41 sec	d=
10 = 1.56£	a = 1.56
Find the distance the train moved in going from rest to 10 m/s.	t = ?

d. F

$$d = \frac{V_1 + V_2}{2} \cdot t = \frac{0 + 10}{2} (6.41) = 32.05 m$$

$$- \text{ or - another way ...}$$

$$d = V_1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{12}{2} (1.54) (4.41)^{\frac{2}{3}} = 32.05 m$$

1) 50 m, 20 m/s, 10 m/s, 200 m 2) 10 m/s 3) 2250 m/s² 4) 1.56 m/s², 3.85 sec, 6.41 sec, 32.1 m