Kinematics Equation Sheet
The five Kinematics Variables:
$v_{i}=$ Initial Velocity $(\mathbb{e} t=0)(\mathrm{m} / \mathrm{s})$
$v_{f}=$ final Velocity $^{\left(@ \varepsilon_{\sim} d\right)}(\mathrm{m} / \mathrm{s})$
. $d=$ displacement (m)
$\begin{aligned} & a=\text { acceleration } \\ & t=\text { time (sec) }\end{aligned} \rightarrow \frac{\mathrm{m} / \mathrm{s}}{\mathrm{s}}=\frac{\mathrm{m}}{\mathrm{s}} \cdot \frac{1}{\mathrm{~s}}=\mathrm{m} / \mathrm{s}^{2}$

Equation Number	Unused variable	Equation
1		$V_{f}=V_{1}+a+t$
2		$d=V_{a V_{g}} \cdot t_{\text {or }} d=\frac{V_{1}+1 / f}{2} \cdot t$
3		
4		
5		

$v_{i} \Rightarrow \Theta t=0$
v_{f}. © The End

What 3 things can occur between V_{i} \& V_{f}
displacement
accelerate
Time
Page 4 of 20

Acceleration Worksheet

1. The Velocity Time graph above shows an object that is Accelerating
2. The slope of the Velocity time graph gives us acceleration
3. The Equation for the slope is?

$$
a=\frac{\Delta V}{\Delta t h e ~ E q u a i o n ~ t o ~ t h e ~ s o p e ~ i s ? ~}
$$

4. This gives us one way to calculate acceleration. Rearrange the equation to solve for Velocity final.

$$
a t=V_{f}-V_{i} \Rightarrow
$$

5. Given V_{i} and V_{f}, how do we calculate average velocity?

Note: You can only use this to find the average velocity for an accelerating object.
6. Given Average Velocity and time, how do we calculate the distance an object travels?

$$
d=(V \text { avg })-t
$$

7. Using the results of questions 5 \& 6. write an equation to calculate the distance that an accelerating object travels.

These are two very important equations in physics; let's work some example problems using these equations

Acceleration \& Distance Example Problems
E1. A car starting from rest increases its velocity to $40 \mathrm{~m} / \mathrm{s}$ in 5.0 seconds.

$$
\begin{aligned}
& v_{i}=O- \\
& v_{f}=40- \\
& d=* \\
& a=?- \\
& t=\dot{5}-
\end{aligned}
$$

a. What is the cab acceleration?

$$
\begin{aligned}
& \text { What is the cap acceleration? } a=\frac{40}{5}=8 \mathrm{~m} / \mathrm{s}^{2} \\
& V_{f}=X_{1}^{1}+a t
\end{aligned}
$$

$$
40=a \cdot 5
$$

b. What is the cars overage velocity?

$$
V=\frac{\forall+V+}{2}=\frac{40}{2}=20 \mathrm{~m} / \mathrm{s} .
$$

c. How far did the car go in the 5.0 seconds?

$$
d=\bar{V} \cdot t=20(5)=100 \mathrm{~m}
$$

E2. A bicyclist going $14 \mathrm{~m} / \mathrm{s}$ rolls to a stop in 7 s .
a. What was the bicyclist gavage velocity?
$v_{i}=14$
$v_{f}=0$
$d=$ *
$a=$?
$t=7 \mathrm{sec}$
c. How far did the bicyclist travel while stopping?

$$
\begin{gathered}
t=7 \\
\mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

$$
a=-2 \mathrm{~m} / \mathrm{s}^{2}
$$

b. What was the bicyclist acceleration?

$$
\bar{V}=\frac{V_{i+V}}{2}=\frac{14}{2}=7 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
V & =V_{i}+a t \quad \frac{7 a}{7}=-\frac{14}{7} \\
0 & =14+7 a
\end{aligned}
$$

$$
d=\bar{V} \cdot t=7 \cdot 7=49 \mathrm{~m}
$$

E3. A Physics student drops a rock from a 30 m high cliff and times it. The rock falls for 2.47 seconds.

$$
v_{i}=0
$$

a. What was the rock's average velocity?

$$
v_{f}=24,3
$$

$$
d=30
$$

b. What was the final Velocity? $\quad \bar{V}=12.15 \mathrm{~m} / \mathrm{s}$

$$
a=?
$$

$$
t=2,47
$$

c. What was the rocks acceleration?

$$
\begin{aligned}
& V_{f}=Y_{1}+a t \quad a=\frac{24.3}{2.47}=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& 24.3=2.47 a \text { Page } 6 \text { of } 20
\end{aligned}
$$

Acceleration \& Distance Practice Problems (Equations 1 \& 2)

$$
V_{f}=V_{i}+a \cdot t \quad d=\bar{V} \cdot t=\frac{V_{i}+V_{f}}{2} t
$$

1. Is a car driving in a circle at a constant speed accelerating? Explain why
$a=\frac{\Delta V}{\Delta t}$
is accelerating because
direction Changed

Note: For the next problems, assume the objects are traveling in a straight-line motion and are going the same direction.

$$
\begin{aligned}
& V_{i}= \\
& V_{f}= \\
& d= \\
& a= \\
& t=
\end{aligned}
$$

2. What is the acceleration of each car?
a) A Ford mustang can go from zero to $26.8 \mathrm{~m} / \mathrm{s}$ to (60 mph) in 5.0 seconds.
b) A Ford Escort can go from zero to $35.8 \mathrm{~m} / \mathrm{s}(80 \mathrm{mph})$ in 10 seconds.

$$
\begin{aligned}
& V_{i}= \\
& V_{f}= \\
& d= \\
& a= \\
& t=
\end{aligned}
$$

3. Suppose a sprinter increases her speed each second, first from 0 to 5 meters/sec, then from $5 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$, then from $10 \mathrm{~m} / \mathrm{s}$ to $15 \mathrm{~m} / \mathrm{s}$. What is her acceleration?
4. A car starting from rest increases its velocity to $24 \mathrm{~m} / \mathrm{s}$ in 3.0 seconds.
a. What is the car's acceleration?
b. What is the car's average velocity?

$$
\begin{aligned}
& V_{i}= \\
& V_{t}= \\
& d= \\
& a= \\
& t=
\end{aligned}
$$

5 A ball rolls down a hill, starting from rest and travels 30.0 m in 6.0 s .
a. What was the balls average velocity?
b. What was the balls final velocity?
$V_{i}=$
$V_{f}=$
$d=$
$a=$
$t=$
c. What was the balls acceleration?
6. A skateboarder going $24 \mathrm{~m} / \mathrm{s}$ rolls to a stop in 4 s .
a. What was the skateboarder's average velocity?
b. What was the skateboarder's acceleration? $t=$
c. How far did the skateboarder travel while stopping?
2) $5.36 \mathrm{~m} / \mathrm{s}^{2}, 3.58 \mathrm{~m} / \mathrm{s}^{2}$ 3) $5.0 \mathrm{~m} / \mathrm{s}^{2} \quad$ 4) $8.0 \mathrm{~m} / \mathrm{s}^{2}, 12 \mathrm{~m} / \mathrm{s}, 36 \mathrm{~m}$, 5) $5 \mathrm{~m} / \mathrm{s}, 10 \mathrm{~m} / \mathrm{s}, 1.66 \mathrm{~m} / \mathrm{s}^{2}$
6) $12 \mathrm{~m} / \mathrm{s},-6.0 \mathrm{~m} / \mathrm{s}^{2}, 48 \mathrm{~m}$

