Kinematics Equation Sheet

Number	Unused Variable	Equation
1	d	$v_{f}=v_{i}+a t$
2	a	$d=\bar{V} \cdot t \quad$ or $\quad d=\left(\frac{v_{i}+v_{f}}{2}\right) t$
3	$V f$	$d=v i \cdot t+\frac{1}{2} a t^{2}$
4		
5		

acceleration due to gravity $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Kinematics Variables:
$V_{i}=$ Initial Velocity, the start of the problem
$V_{f}=$ Final Velocity, the end of the problem
$d=$ displacement, the change in position between V_{i} and V_{f}
$a=$ acceleration which changes V_{i} to V_{f}
$t=$ time that it takes to go from V_{i} and V_{f}
$\mathrm{ft} / \mathrm{sec}$

$$
\begin{aligned}
& \text { E1. A car traveling } 25 \mathrm{ft} / \mathrm{sec} \text { increases its velocity to } 40 \mathrm{D} / \mathrm{s} \text { in } 3.5 \text { seconds. } \\
& 1 \text { acceleration? } \\
& v_{1}=25 \\
& \begin{array}{l}
a=\text { ? } \\
=1 \\
=3
\end{array} \\
& 40=25+3.5 a \\
& t=3.5 \\
& 15=3.5 a \quad a=4.29 \mathrm{ft} / \mathrm{s}^{2} \\
& \bar{V}=\frac{V_{1}+V_{f}}{2}=\frac{25+40}{2}=32,5 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

$$
\begin{aligned}
& d=\bar{V} \cdot t \\
& 32,5(3,5)=114 \mathrm{~m}
\end{aligned}
$$

Revisiting Area under the Curve

Finding the "area underneath the curve" for the velocity vs. time graph gives some interesting results. (You will always find the area between the curve (or line) and the horizontal axis.)

1 Find the area underneath the velocity vs. time line below.
a. How would you describe the motion of this object in the graph below?

Constant Velocity
b. What shape is represented in the graph below, how would you calculate the area of this object?
RECTangle $B \circ h$

What is the length of the base? (Include units!)

$$
7(5)
$$

What is the height? (Include units!)

$$
60 \mathrm{~m}
$$

Calculate the area. (Include units!)

$$
7\left(\frac{5}{6}(1) \frac{m}{9}\right)=42 \mathrm{~m}
$$

2. How would you describe the motion of the object in the velocity vs. time graph below?
accelerating

a) What is the equation for the area of a triangle?

$$
\frac{1}{2} B \cdot h
$$

b) What is the length of the base? (Include units!)

$$
7 \mathrm{~s}
$$

c) What is the height? (Include units!)
$10 \mathrm{~m} / \mathrm{s}$
Calculate the area. (Include units!)

$$
\frac{1}{2}(7 \mathrm{~s})\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)=35 \mathrm{~m}
$$

d. What does the height represent?

$$
V_{f}-V_{i}=\Delta v
$$

Let's combine the two!

1. Write an equation for the displacement in terms of the
 variables d (displacement) V_{i} (initial velocity), a (acceleration), and t (time) that you can use to determine the area under the velocity vs. time graph below.
a) Let's start by finding the area of the rectangle, "Area 1".

$$
d_{1}=V_{i} \cdot t
$$

Triangle A_{2}

$$
\begin{aligned}
& \text { b) Let's start by finding the area of the octangle "Aron } 1 \text { ". } \\
& d=\frac{1}{2} t \cdot \Delta v=\frac{1}{2} \Delta v, t \\
& d=\frac{1}{2} \Delta V \cdot t \frac{t}{t} \\
& d=\frac{1}{2}\left(\frac{\Delta V}{t}\right) t \cdot t=\frac{1}{2} a t^{2}
\end{aligned}
$$

c) Combine the combine the displacements to find the total displacement of the object.
$d=d_{1}+d_{2}$
$d=v_{i} t+\frac{1}{2} a t^{2}$ doesn't Use v_{f}

More Acceleration \& Distance Example Problems
E1. A car starting from rest accelerates at $2.6 \mathrm{~m} / \mathrm{s}^{2}$ how far does the car travel
$\delta=V: 4+1 / 2 a t^{2}$

$$
d=\frac{1}{2}(2.6)(10)^{2}
$$

$$
\begin{aligned}
& v_{i}=0 \\
& v_{t}=x \\
& d=? \\
& a=2.6 \\
& t=105
\end{aligned}
$$

E2. A truck starting from rest and accelerates at $3.0 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take for the truck to travel $150 ?$

$$
\begin{aligned}
& v_{i}=0 \\
& v_{f}=0 \\
& d=150 \\
& a=3 \\
& t=?
\end{aligned}
$$

$$
\begin{aligned}
& d=y \cdot t^{0}+1 / 2 a t^{2} \\
& 150=1 / 2(3) t^{2} \\
& \frac{150}{1.5}=\frac{1.5 t^{2}}{1.5 \text { Page } 10 \text { of } 20}
\end{aligned}
$$

$$
\begin{aligned}
& t^{2}=100 \\
& t=\sqrt{100} \\
& t=10 \mathrm{sec}
\end{aligned}
$$

$$
v_{f}=v_{i}+a t \quad d=\frac{v_{i}+v_{f}}{2} t \quad d=v_{i} t+\frac{1}{2} a t^{2}
$$

Acceleration \& Distance Problems Part 2

1. A skier, going $16 \mathrm{~m} / \mathrm{s}$ accelerates down a slope at $1.6 \mathrm{~m} / \mathrm{s}^{2}$ how far does the skier travel in 5 seconds?

$$
\begin{aligned}
& V_{i}= \\
& V_{f}= \\
& d= \\
& a= \\
& t=
\end{aligned}
$$

2. A skateboarder rolls to a stop over a distance of 60 m in 4 s how fast was the skate boarder initially going?
$V_{i}=$
$V_{f}=$
$d=$
$a=$
$t=$
3. A car starting from rest accelerates down the road at $5 \mathrm{~m} / \mathrm{s}^{2}$. How long will it take the car to go 100 m ?
$V_{i}=$
$V_{f}=$
$d=$
$a=$
$t=$
4. Jamie fires a bullet through a block of ballistics gel on your favorite Myth Busters episode. The bullet enters the 0.30 meter thick block at $320 \mathrm{~m} / \mathrm{s}$ and leaves the block at $50 \mathrm{~m} / \mathrm{s}$, what is the acceleration of the bullet? (Hint: Find time first using equation \#2)

$$
V_{i}=
$$

$V_{f}=$
$d=$
$a=$
$t=$

