\qquad KEY

$$
F=\frac{K q_{1} q_{2}}{d^{2}} \quad K=9.0 \times 10^{9} \frac{N m^{2}}{C^{2}} \quad 1 \text { ч } C=10^{-6} \mathrm{C}
$$

Coulomb's Law Problem Set 1

1. A sphere carrying a charge of +2.0 y C is placed 15 cm from a sphere carrying a charge of -.50 yC . What is the force between the two spheres? $(0.4 \mathrm{~N})$

$$
F=\frac{k q_{1} q_{12}}{d^{2}}=\frac{\left(9 \times 10^{9}\right)\left(2 \times 10^{-6}\right)\left(.5 \times 10^{-6}\right)}{(0.15)^{2}}=\begin{aligned}
& 0.40 \mathrm{~N} \\
& \text { Atractionl }
\end{aligned}
$$

2. A charge of $4.0 \times 10^{-5} \mathrm{C}$ is attracted by a second charge with a 350 N force when the separation is 10.0 cm . Calculate the magnitude of the second charge (9.72 uC)

$$
\begin{aligned}
& F=\frac{k q_{1} q_{2}}{d^{2}} \\
& 350=\frac{\left(9 \times 10^{9}\right)\left(4 \times 10^{-5}\right)}{(0.10)^{2}} q_{2} \\
& 350=36,000,000 q_{2} \\
& q_{2}=\frac{350}{36000000} \\
& q_{2}=9.72 \times 10^{-6}
\end{aligned}
$$

3. What is the magnitude of the charge on two equally charged spheres that exert a force on

$$
\begin{aligned}
& \text { each other of } 0.300 \mathrm{~N} \text { when } 75.0 \mathrm{~cm} \text { apart? }(4.33 \text { ц } \mathrm{C}) \\
& q_{1}=q_{2}=q \\
& F=\frac{k q q}{d^{2}}=\frac{k q^{2}}{d^{2}} \\
& 0.30=\frac{9 \times 10^{9} q^{2}}{(.75)^{2}}=\left(16 \times 10^{9}\right) q^{2} \\
& q^{2}=\frac{0.3}{16 \times 10^{9}}=1.875 \times 10^{-11} q^{2}=\sqrt{1.875 \times 10^{-4}} \\
& \text { 4. What is the distance between two spheres, each with a charge of } 2.5 \times 10^{-6} \mathrm{C} \text {, when the }=4.33 \times 10^{-6}
\end{aligned}
$$ force between them is 0.50 N ? $(.335 \mathrm{~m})$

$$
\begin{aligned}
& F=\frac{k q_{1} 9_{2}}{d^{2}} \Rightarrow F \cdot d^{2}=k q_{1} q_{2} \\
& 0.5 d^{2}=9 \times 10^{9}\left(2.5 \times 10^{-6}\right)^{2} \\
& .5 d^{2}=0.05625
\end{aligned}
$$

$$
\begin{aligned}
& d^{2}=\frac{0.05625}{.5}=0.1125 \\
& d=\sqrt{0.1125}= \\
& d=0.335 \mathrm{~m}
\end{aligned}
$$

