\qquad KEY

$$
F=\frac{K q_{1} q_{2}}{d^{2}} \quad K=9.0 \times 10^{9} \frac{\mathrm{Nm}^{2}}{C^{2}} \quad 1 \text { ч } C=10^{-6} \mathrm{C}
$$

Coulomb's Law Problem Set 2

1. A sphere carrying a charge of +2.5 c C is placed 0.25 m from a sphere carrying a charge of -0.504 C . What is the force between the two spheres? $(0.18 \mathrm{~N})$

$$
F=\frac{K q_{1} q_{2}}{d^{2}}=\frac{\left(9 \times 10^{9}\right)\left(2.5 \times 10^{-6}\right)\left(0.5 \times 10^{-6}\right)}{(0.25)^{2}}=\binom{0.18 \mathrm{~N}}{\text { AHRACION }}
$$

2. Two equally charged spheres that exert a force on each other of 0.900 N when separated

$$
\begin{array}{rlrl}
F=\frac{K q_{1} q_{2}}{d^{2}}=\frac{K q^{2}}{d^{2}} & 0.9 & =\frac{9 \times 10^{9} q^{2}}{(0.65)^{2}} & q^{2}=4.225 \times 10^{-11} \\
q_{1}=q_{2}=q & 0.9 & =2.13 \times 10^{10} q^{2} & q=\sqrt{4.225 \times 10^{-11}} \\
& q^{2}=0.9 / 2.13 \times 10^{10} & q=6.5 \times 10^{-6} \mathrm{C}
\end{array}
$$

3. A charge of $8.0 \times 10^{-6} \mathrm{C}$ is attracted by a second charge with a 0.350 N force when the separation between them is 0.15 m . Calculate the magnitude of the second charge (0.11 y C$)$

$$
\begin{aligned}
& F=\frac{K q_{1} q_{2}}{d^{2}} \\
& 0.35=\frac{9 \times 10^{9}\left(8 \times 10^{-6}\right) q}{(.15)^{2}}
\end{aligned}
$$

$$
3,200,000 q=0.35
$$

$$
q=0.35 / 3200000
$$

$$
q=1.1 \times 10^{-7}
$$

$$
q=1.1 \times 10^{q} 9 .
$$ Subtract

4. What is the distance between two spheres, one with a charge of $3.5 \times 10^{-6} \mathrm{C}$ and the other with a charge of $5.5 \times 10^{-6} \mathrm{C}$, when the force between them is 0.025 N ? (2.6 m)

$$
\begin{aligned}
& F \cdot d^{2}=K q_{1} q_{2} \\
& 0.025 d^{2}=9 \times 10^{9}\left(5.5 \times 10^{-6}\right)\left(3.5 \times 10^{-6}\right)=173.25 \times 10^{-3} \\
& d^{2}=\frac{173.25 \times 10^{-3}}{0.025}=6.93 \quad d=\sqrt{6.93}=2.63 \mathrm{~m}
\end{aligned}
$$

