Waves and Sound

LCHS Honors Physics

$$T_p = 2\pi \sqrt{\frac{l}{g}}$$
 $T_{SHO} = 2\pi \sqrt{\frac{m}{K}}$ $F = Kx$ $T = \frac{1}{f}$ $f = \frac{1}{T}$

Harmonic Motion Problems:

1. What is the period of a pendulum with a length of 1.8m?

$$T = 2\pi \sqrt{\frac{2}{5}} = 2\pi \sqrt{\frac{1.8}{9.9}} = 2.69$$
 sec

2. A student sets up a pendulum in the classroom with a period of 1.0 seconds and wants to use it as a timer. What length is required in order to obtain the period of 1 second?

$$T = 2\pi \sqrt{\ell/q}$$
 $\left(\frac{1}{2\pi}\right)^2 = \ell/q.8$ $\ell = q.8 \cdot 0.0253$
 $1 = 2\pi \sqrt{\ell/q.8}$ $0.0253 = \ell/q.8$ $\ell = 0.248$ m

3. What would the period be if the student takes the pendulum to the moon where the gravitational constant is approximately 1/6 of the earth's gravitational constant?

$$T = 2\pi \sqrt{\frac{9}{9}}$$
 $9 = 9.8/6 = T = \frac{100}{1.63} = 2.4 \text{ sec}$

4. By what factor must you increase the length of the string of a pendulum in order to double the period?

5. A student sets up a simple harmonic oscillator (SHO) with a mass of 0.25 kg and a spring constant of 65 N/m. What is the period of this oscillator?

What is the frequency?
$$f = \frac{1}{1} = \frac{1}{1}$$

6. What force is required to displace a spring with a spring constant "k" of 98 N/m by 0.28m?

7. A spring is displaced 15 cm by a force of 12.8 N, what is the spring constant "k"?

$$F=KX$$
 12.8 = $K(.15)$ $K = \frac{12.8}{0.15} = 85.3 \text{ N/m}$

A student displaces a SHO by a distance of 25 cm with a force of 18N. The mass of the oscillator is 1.5 kg. What is the oscillator's frequency of vibration?

$$K = \frac{18}{x} = \frac{18}{.25} = 72 \text{ N/m}$$

$$f = \frac{1}{72} = \frac{1}{.907} = 1.1 \text{ Hz}$$

$$T = 2\pi \sqrt{m/k} = 2\pi \sqrt{\frac{1.5}{72}} = 0.907$$