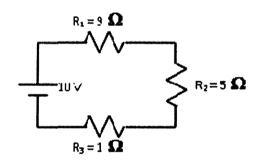
DC Circuits Honors Physics 2008/09

Name Key


Series Circuit Problems:

Show your work - Draw the circuit - Make a chart

- 1. Three resistors, 25. Ω , 45. Ω and 75. Ω are connected in series and a 0.51 A current passes through them. Determine:
 - a) The equivalent resistance. (145. Ω)

b) The potential difference across all three resistors. (74. V)

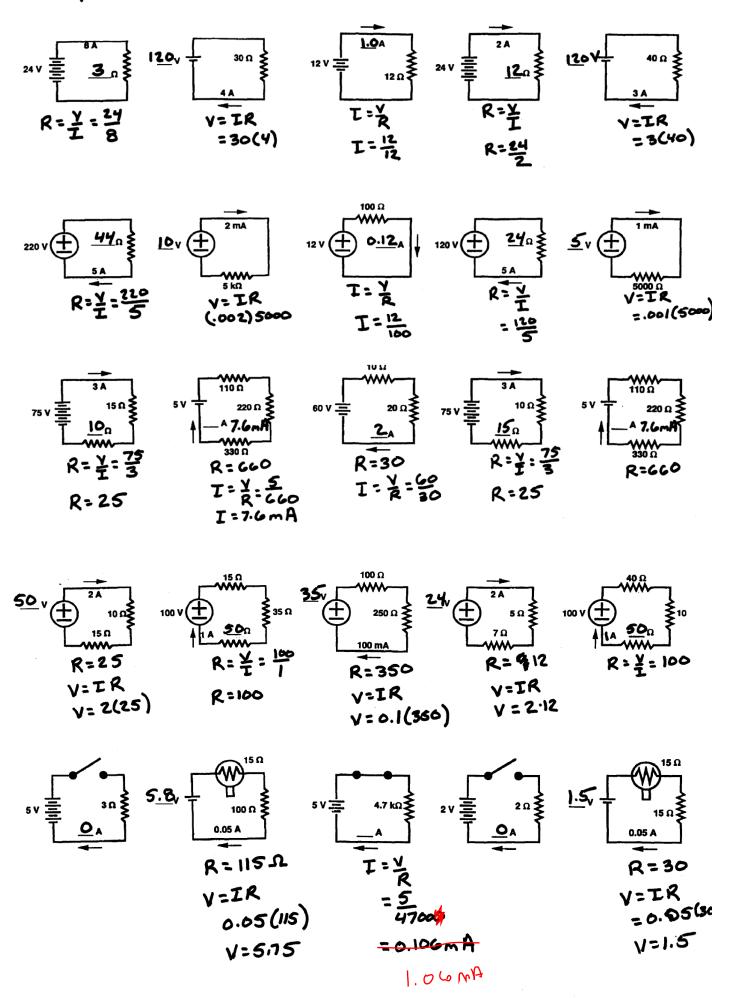
- 2. Three resistors, 9.0 Ω , 5.0 Ω and 1.0 Ω are connected in series across a 24 V battery. Find:
 - a) The current in each resistor. (1.6 A)
 - b) The voltage difference across each resistor. (14 V, 8.0 V, 1.6 V)
 - c) The power dissipated by each resistor. (23 W, 13 W, 2.6 W)

	R	I	V	Р
R ₁	9	1.4	14	23
R ₂	5	1.6	8	13
R ₃	1	1.4	1-6	2.6
TOTAL	15	1.6		

3. A battery dissipated 2.5 W of power in each of two 47.0 Ω resistors connected in series. What is the voltage of the battery?

$$2(2.5) = \frac{V^{2}}{2(47)}$$

$$V^{2} = 470$$


$$V = 21.7 \text{ volks}$$

DC Circuits

Honors Physics 2008/09

4. A 16.0 Ω resistor and an 8.0 Ω are connected in series across a 12 V battery. What is the voltage difference across each resistor? (8.0 V, 4.0 V)

	R	I	V	Р
R ₁	16	0.5	8	4
R ₂	8.0	0.5	4	2
TOTAL	24	0.5	12.0	Ce

