Physics

Electrostatics

Understanding Coulomb's Law:
$$F = \frac{Kq_1q_2}{d^2}$$
 $K = 9.0 \times 10^9 \frac{Nm^2}{C^2}$
Name

Part one the effect of charge

Calculate the forces below and determine whether it is an attraction or repulsion

	q ₁	q ₂	d (m)	Force (N)	Attraction or repulsion
Α	+ .03 C	+ .02 C	116 m	401 N	Attenctive Repulsive
В	+ .06 C	+ .02,⁄C	116 m	802 N	Attenchive Repulsive
С	+ .03 C	+ .01 C	116 m	200 N	Repulsive AHRACLIVE
D	03 C	+ .02 C	116 m	- 401 N	AHRACLIVE
Е	06 C	02 C	116 m	+ 80 2 N	Attenet Repulsive

- 1. When using coulomb's Law to calculate a force, a positive force represents a(n) <u>Republic</u> and a negative force represents a(n) <u>AHEACLICE</u>
- 2. Using Ex A as a comparison, find an example in which one of the charges has been doubled. Ex 6. What happens to the force when one charge is doubled? **T+ 300** birs
- 3. Using Ex A as a comparison, find an example in which on or the forces has been halved. EX _____. What happens to the charge when the force is halved? T+ is have?
- 4. Using Ex A as a comparison, Predict what the force will be if:
 a) Both charges are doubled. F= _CCC N
 - b) Both charges are halved. F= 100 N
 - c) One charge is tripled. F= 1200 N
 - d) Both charges were tripled. F= 3600 N
 - e) One charge is tripled and the other halved. F = 400 (3/2) = 600 N

Electrostatics

Part two the effect of distance

4

Calculate the forces below and determine whether it is an attraction or repulsion

	Q1	q ₂	d (m)	Force (N)	Attraction or repulsion
A	+ .03 C	+ .02 C	116 m	401 N	Repulsive
в	+ .03 C	+ .02 C	232 m	100 N	Repulsive
С	+ .03 C	+ .02 🖗	58 m	1600 N	RepulsiVE
D	+ .03 C	+ .02 C	29 m	6420 N	RepulsiVE

1. Using Ex A as a comparison, find what happens to the force when the distance is doubled?

2. Using Ex A as a comparison, find what happens to the force when the distance is halved?

C FORCE = 4 X

3. Using Ex A as a comparison, find what happens to the force when the distance is quartered?

D Force -

4. Force and distance are an inverse square relationship. Describe in you own words what this means and draw a graph of what it would look like

16X

= 3208 N

5. Using Ex A as a comparison, Predict what the force will be if:

a) d were tripled.
$$F = 401(14) = 45N$$

- b) d were decreased to 1/3. F= 401 (9) \ge 3C10 N
- c) One charge was doubled and d was halved

20