Electrostatics
-Understanding Coulomb's Law: $F=\frac{K q_{1} q_{2}}{d^{2}} \quad K=9.0 \times 10^{9} \frac{N m^{2}}{C^{2}}$
Name \qquad
Part one the effect of charge
Calculate the forces below and determine whether it is an attraction or repulsion

1. When using coulomb's Law to calculate a force, a positive force represents an) Repulsive and a negative force represents an)
AHEACtive
2. Using Ex A as a comparison, find an example in which one of the charges has been doubled. Ex $\boldsymbol{3}$. What happens to the force when one charge is doubled? It doubles
3. Using Ex A as a comparison, find an example in which on or the forces has been halved. EX \qquad . What happens to the charge when the force is halved? ct
4. Using Ex A as a comparison, Predict what the force will be if:
a) Both charges are doubled. $F=$
b) Both charges are halved. $F=100 \mathrm{~N}$
c) One charge is tripled. $F=1200 \mathrm{~N}$
d) Both charges were tripled. $F=3600 \mathrm{~N}$
e) One charge is tripled and the other halved. $F=400(3 / 2)=600 \mathrm{~N}$

Electrostatics
Part two the effect of distance
Calculate the forces below and determine whether it is an attraction or repulsion

	q_{1}	q_{2}	$\mathrm{~d}(\mathrm{~m})$	Force (N)	Attraction or repulsion
A	+.03 C	+.02 C	116 m	401 N	Repulsive
B	+.03 C	+.02 C	232 m	100 N	Repulsive
C	+.03 C	+.02 C	58 m	1600 N	RepulsivE
D	+.03 C	+.02 C	29 m	6420 N	RepulsivE

1. Using Ex A as a comparison, find what happens to the force when the distance is doubled?
"B" Force $=\frac{1}{4} x$
2. Using Ex A as a comparison, find what happens to the force when the distance is halved?

$$
C \text { FORCE }=4 x
$$

3. Using Ex A as a comparison, find what happens to the force when the distance is quartered?
D Force $=16 x$
4. Force and distance are an inverse square relationship. Describe in you own words what this means and draw a graph of what it would look like

As distance Increases, Force is Inversly Proportional to the square of the distance
5. Using Ex A as a comparison, Predict what the force will be if:

a) d were tripled. $F=401(1 / 9)=45 \mathrm{~N}$
b) d were decreased to $1 / 3$. $F=401(4)=3610 \mathrm{~N}$
c) One charge was doubled and d was halved $\frac{(401) 2}{(1 / 2)^{2}}=3208 \mathrm{~N}$

