\qquad
\qquad

Acceleration \& Distance Problems Part 1

$$
V_{f}=V_{i}+a \cdot t \quad d=V_{\text {average }} \cdot t=\frac{V_{i}+V_{f}}{2} \cdot t
$$

Note: For the next problems, assume the objects are traveling in a straight-line motion and are going the same direction.

1. What is the acceleration of each car?

$$
\begin{aligned}
& V i=0 \\
& V f=2(.8 \\
& d \\
& a=?
\end{aligned}
$$

a) A Ford mustang can go from zero $26.8 \mathrm{~m} / \mathrm{s}$ to in 5.0 seconds. $\left(5.36 \mathrm{~m} / \mathrm{s}^{2}\right)$
$V_{f}=V_{1}+a t$
$26.8=3 a$
$a=\frac{26.8}{5}=5.36 \mathrm{~m} / \mathrm{s}^{2}$
b) A Ford Escort can go from zero to $35.8 \mathrm{~m} / \mathrm{s}$ in 10 seconds. $\mathbf{V}_{0}: 0$ $\left(3.58 \mathrm{~m} / \mathrm{s}^{2}\right){ }^{\circ}{ }^{\circ}$ $v_{f}=\nu_{i}+a t$ $35.8=10 a$

2. In 3 seconds a car moving in a straight line increases its speed from $22.4 \mathrm{~m} / \mathrm{s}$ to 29.1 m / s while a truck increases its speed from 0 mph to $6.7 \mathrm{~m} / \mathrm{s}$ in the same amount of time. What is the acceleration of each vehicle? ($2.23 \mathrm{~m} / \mathrm{s}^{2}$)

CAR	$V_{f}=V_{i}+a t$	TRuck	$V_{f}=V_{i}+a t$
$V_{i}=22.4$	$29.1=224+a(3)$	$V_{i}=0$	$6.7=0+3 a$
$V_{f}=29.1$	$3 a=29.1-22.4$	$V_{f}=6.7$	$a=\frac{6.7}{3}$
$a=?$	$3 a=6.7$		
$t=3$	$a=\frac{6.7}{3}=\underbrace{2.2 \mathrm{~m} / \mathrm{s}^{2}}$	$t=3$	

3. Suppose a sprinter increases her speed each second, first from 0 to 5 meters/sec, then from $5 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$, then from $10 \mathrm{~m} / \mathrm{s}$ to $15 \mathrm{~m} / \mathrm{s}$. What is her acceleration?

Since the car's velocity changes by $5 \mathrm{~m} / \mathrm{s}$ every second it has an acceleration of $5 \mathrm{~m} / \mathrm{s}$ per seconds or $5 \mathrm{~m} / \mathrm{s}^{2}$
4. A car starting from rest increases its velocity to $24 \mathrm{~m} / \mathrm{s}$ in 3.0 seconds.

$$
\begin{array}{lll}
\text { a. What is the car's acceleration? } & a=\frac{24}{3}=8 \mathrm{~m} / \mathrm{s}^{2} \\
V_{i}=0 & V_{f}=V_{i}+a t & \\
V_{f}=24 & 24=0+3 a & \\
t=3
\end{array}
$$

b. What is the car's average velocity?

$$
V_{\text {arg }}=\frac{0+24}{2}=12 \mathrm{~m} / \mathrm{s}
$$

c. How far did the car go in the 3.0 seconds?

$$
d=V \cdot t=(12 \mathrm{~m} / \mathrm{s}) 3 \mathrm{sec}=36 \mathrm{~m}
$$

Acceleration \& Distance Problems Part 2
5 A ball rolls down a hill, starting from rest and travels $30: 0 \mathrm{~m}$ in 6.0 s .
$V_{i}=0 \quad$ a. What was the ball's average velocity?
vf

$$
\left.\begin{array}{ll}
\begin{array}{ll}
\text { What was the ball's average velocity? } \\
d=(V a u g) \cdot t & 30=V_{\text {aug }}(6)
\end{array} & V_{\text {avg }}=\frac{30}{6}= \\
\text { What was the ball's final velocity? } \\
V_{\text {avg }}=\frac{V_{i}^{\prime \prime} V_{f}}{2} & \frac{V_{f}}{2}=5 \mathrm{~m} / \mathrm{s}
\end{array} \quad V_{f}=10 \mathrm{~m} / \mathrm{s}\right\}
$$

$d=30$ b. What was the balls final velocity?
$t=6 \quad$ c. What was the ball's acceleration?

$$
\begin{aligned}
& \text { What was the bal's acceleration? } \\
& v_{f}=a(6) \quad a=a t \quad \frac{10}{6}=1.67 \mathrm{~m} / \mathrm{s}^{2} \\
& v_{f}=a t
\end{aligned}
$$

6. A skateboarder going $24 \mathrm{~m} / \mathrm{s}$ rolls to a stop in 4 s .
$v_{i}=24$
$v f=0$
d: b. What was the skateboarder's acceleration?
$a=\quad v_{f}=v_{i}+a t$
$t=4$ c. How far did the skateboarder travel while stopping?

$$
d=V_{\text {aug }} \cdot t=12(4)=48 \mathrm{~m}
$$

7. A pitcher throws a ball straight upward at $39.2 \mathrm{~m} / \mathrm{s}$. The balls maximum height is reached 4.0 s later.
$V_{i}: 34.2$ a. What was the ball's acceleration? (think about the velocity at the top)

$$
v_{f}=0
$$

d

$$
\begin{array}{ll}
v_{f}=v_{i}+a t & u_{a}=-39.3 \\
0=39.3+4 a & a=\frac{-39.3}{4}=9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

$a=$?
$t=4$

$$
d=\left(\frac{V_{i}+V_{f}}{2}\right) \cdot t=\frac{39.3+0}{2}(4)=78.4 \mathrm{~m}
$$

