\qquad
Period \qquad
Cannon Problems

1. Robin Hood shoots an arrow with a speed of $49.0 \mathrm{~m} / \mathrm{s}$ at an angle of 30° with the horizontal. a) What are V_{x} and V_{y} ?

$$
\begin{aligned}
& V_{x}=V_{\cos 4}=49 \cos 30^{\circ}=42.4 \mathrm{~m} / \mathrm{s} \\
& V_{y}=V_{\sin } 4=49 \sin 30^{\circ}=24.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) How long after it is shot does the arrow reach the maximum height?

$$
\begin{aligned}
V_{f} & =V_{i}+a t \\
0 & =24.5-9.8 t \\
-24.5 & =-9.8 t \\
t & =\frac{24.5}{9.8}=2.5 \mathrm{sec}
\end{aligned}
$$

(c) How high does the arrow go?

$$
\begin{aligned}
& d_{y}=\frac{1}{2} a t^{2} \\
& d_{y}=\frac{1}{2}(9.8)(2.5)^{2}=30.6 \mathrm{~m}
\end{aligned}
$$

(d) How long until the arrow reaches the ground (from the time it was shot)?

$$
t=2 t_{(0 p)}=2(2.5)=5.0 \mathrm{sec}
$$

(e) How far away from Robin Hood does it land?

$$
d x=V_{x} \cdot t=42.4(5)=212 \mathrm{~m}
$$

2. In attempting a slam-dunk, Michael Jordan leaps into the air from the top of the key with a velocity of $7.62 \mathrm{~m} / \mathrm{s}$ at an angle of 40° above the floor.

		To Top	From TOp
v_{i}	5.84	4.90	0
v_{f}	5.84	0	-4.90
d	$d x$	$d y$	$d y$
a	0	-9.8	-9.8
t			

a) What are V_{x} and $V_{i y}$?

$$
\begin{aligned}
& V_{x}=7.62 \cos 40^{\circ}=5.84 \mathrm{~m} / \mathrm{s} \\
& V_{y}=7.62 \sin 40^{\circ}=4.90 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b) How high are his feet at the top of his jump?

$$
\begin{array}{rlrl}
T_{u p} \rightarrow v_{f} & =v_{i}+a t & d & =\frac{1}{2} a t^{2} \\
0 & =4.9-9.8 t & & d=\frac{1}{2}(9.8)(.5)^{2} \\
9.8 t & =4.9 & d & =1.23 \mathrm{~m} \\
t & =\frac{4.9}{9.8}=0.5 & & d
\end{array}
$$

c) What is his "hang time?"

$$
T_{\text {Total }}=2\left(T_{\text {up }}\right)=2(0.5)=1.0 \mathrm{sec}
$$

d) How far from the top of the key does he land?

$$
d x=v_{x} \cdot t=5.84(1)=5.84 \mathrm{~m}
$$

