\qquad

Standing waves worksheet
Remember a complete wave is two loops!

1. A piece of string 4 meters long is vibrated so that it holds a two loop standing wave. What is the wavelength of this wave?

$$
\begin{aligned}
& l_{\text {loop }}=2 \mathrm{~m}(4: z) \\
& \lambda=2 \text { loops }=2(2)=4 \mathrm{~m}
\end{aligned}
$$

2. A string is vibrated with a wave that has a wavelength of 6 meters. How long is one loop of the standing wave?

$$
1 \text { loop }=1 / 2 \lambda=1 / 2(6)=3 \mathrm{~m}
$$

3. A string is 12 meters long. If the standing wave set up on this string is three loops, what is the wavelength?

$$
\begin{aligned}
& 3 \text { loops }=12 \mathrm{~m} \\
& 1 \text { loop }=12 / 3=4 \mathrm{~m}
\end{aligned}
$$

$$
1 \lambda=2 \operatorname{loops}^{2}=2(4)=8 \mathrm{~m}
$$

4. The speed that a wave can travel down a slinky is $3 \mathrm{~m} / \mathrm{s}$. If a 2 meter long slinky creates a four loop standing wave, what is the frequency of vibration?

$$
\begin{array}{ll}
4 \text { loops }=2 \text { meters } \\
2 \text { loops }=1 \text { meter }=\lambda
\end{array} \quad \begin{aligned}
v & =\lambda \cdot f \\
& =1 \cdot f \\
f & =3 \mathrm{H}_{Z}
\end{aligned}
$$

5. Mr. S. is rock climbing and can't help but make waves on the rope. (Physics over safety any day). If he were to (unwisely) make a standing wave on the rope that had four loops and vibrated at a frequency of 3 Hz , how fast do those waves travel down the rope? (Assume the rope is 10 meters long.)

$$
\begin{array}{ll}
2 / \text { loops }=10 \mathrm{~m} \\
2 \text { loops }=\lambda=5 \mathrm{~m}
\end{array} \quad V=\lambda \cdot f=5(3)=15 \mathrm{~m} / \mathrm{s}
$$

