# Kinematics Equation Sheet

The five Kinematics Variables:

$$v_i =$$

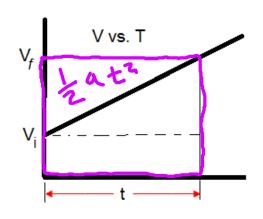
$$v_f =$$

$$d =$$

$$a =$$

$$t =$$

| Equation Number | Unused variable | Equation                                                  |
|-----------------|-----------------|-----------------------------------------------------------|
| 1               | d               | $Vf = vi + a \cdot t$                                     |
| 2               | a               | $d = \frac{(Vi + Vf)}{2} \cdot t \qquad d = Vavg \cdot t$ |
| 3               | Vf              | $d = Vi \cdot t + \frac{1}{2} a \cdot t^2$                |
| 4               | Vi              | d=V4·t-=2at2                                              |
| 5               | +               |                                                           |








What 3 things can occur between  $V_i \& V_f$ 

#### Another Area under the curve:



Consider the V-t graph below, what is another way of finding area under the curve?

Write another distance equation in terms of

### The Last Equation (Number 5)

a. Using your Kinematics equation sheet, which of the 5 variables hasn't been listed as the "unused variable"?

b. Rearrange Equation 1 to solve for time.

c. Substitute your answer from "c" into equation 2 and simplify, this will be equation 5.

$$2ad = (V_{4}+V_{1})(V_{4}-V_{1})$$

$$2ad = V_{4}^{2}-V_{1}^{2}$$

$$V_{4}^{2}=V_{1}^{2}+2ad$$

 $V_{i} = O$ 

 $V_f = \checkmark$ 

= b

t= 4,0

## V<sub>i</sub>V<sub>f</sub>-dat Example Problems

- E1. A student on a bicycle starting from rest has a constant acceleration of 3.0 m/s<sup>2</sup>.
  - After 4.00 seconds how far have they gone?

$$d = \frac{1}{2}(3)(4)^2 = 24m$$

After 4.00 seconds how fast are they traveling?

What is the average velocity during the first 4.00 seconds?

$$\sqrt{\frac{1}{2}} = \frac{\sqrt{1+1/4}}{2} = \frac{12}{2} = \frac$$

How far have they traveled by the time its velocity is 20.0 m/s?

$$V_i = 0$$
 $V_f = 20$ 
 $V_f = 20$ 

- E2. A car is moving down the road with a velocity of 20 m/s when the driver decides to speed up. It takes the car 167 m to reach 30 m/s.
  - What is the acceleration of the car?

$$V_4^2 = V_1^2 + 24d$$
 334  $\alpha = 5$   
 $30^2 = 20^2 + 2 (\alpha) 167$   
 $900 = 400 + 334\alpha$   $\alpha = 1.5 m/s$   
b. How long did it take to go from 20 m/s to 30 m/s?

 $V_{i} = 20$ 

$$V_f = 30$$

### Kinematics Problem Sheet

Given the variables in each problem, decide which equation to use and solve. Write the "equation number" used in the blank. Remember all your answers need units!

#### Show your work below each problem!

$$t = 6.0 \text{ s}$$
  $V_i = 2.0 \text{ m/s}$   $V_f = 14 \text{ m/s}$   $V_f = 14 \text{ m/s}$ 

t = 6.0 s

1

2 
$$t = 4.00 \text{ s}$$
  $a = 6.00 \text{ m/s}^2$   $V_i = 3.00 \text{ m/s}$ 

3 Vi = 0.0 m/s V<sub>f</sub> = -25 m/s 
$$a = -5.0 \text{ m/s}^2$$

$$a = -5.0 \text{ m/s}^2$$

4 
$$Vi = 3.0 \text{ m/s}$$
  $V_f = 21 \text{ m/s}$   $t = 8.0 \text{ s}$ 

5 
$$V_i = 0 \text{ m/s}$$
  $d = 16 \text{ m}$   $t = 4.0 \text{ s}$ 

6 
$$t = 200 \text{ s}$$
  $V_i = -8.0 \text{ m/s}$   $d = 700 \text{ m}$ 

7 
$$V_i = 3.00 \text{ m/s}$$
  $a = 3.00 \text{ m/s}^2$   $t = 3.00 \text{ s}$ 

$$t = 4.0 \text{ s}$$
  $V_f = 48 \text{ m/s}$   $d = 40 \text{ m}$ 

9 
$$a = 2.0 \text{ m/s}^2$$
  $V_f = 10. \text{ m/s}$   $d = 24 \text{ m}$ 

10 
$$V_f = 6.0 \text{ m/s}$$
  $a = 4.0 \text{ m/s}^2$   $t = 3.0 \text{ s}$