$\mathbf{V}_{\mathbf{i}} \mathbf{V}_{\mathbf{f}} \mathbf{d a t} \quad$ Name

1. A car starts from rest and accelerates to a speed of $27 \mathrm{~m} / \mathrm{s}$ in 12 seconds, what is the car's acceleration?
$V_{i}=0$
$V_{f}=27$
$d=x$
$a=$ ?
$t=12$
a. Fill out the ViVfdat table, what is the unused variable? $\square$ d
b. What equation do you use?
\# 1

$$
V_{f}=Y_{i}^{p o} a t
$$

c. Find the acceleration

$$
\begin{aligned}
27 & =a(12) \\
a & =\frac{27}{12}=2.25 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

d. How far did the car travel in the 12 seconds above?

$$
\begin{aligned}
& d=\frac{X_{1}^{0}+V_{f}}{2} t \\
& d=\frac{27}{2}(12)=162 \mathrm{~m}
\end{aligned}
$$

e. Later on, the car slows down to $20 \mathrm{~m} / \mathrm{s}$ over a distance of 658 m , what is the acceleration of the car?

$$
\begin{aligned}
& V_{i}=27 \\
& V_{f}=20 \\
& d=65 B \\
& a=? \\
& t=*
\end{aligned}
$$

$$
\begin{aligned}
& V_{f}^{2}=V_{1}^{2}+2 a d \\
& 20^{2}=27^{2}+2(a) 658 \\
& 400=729+1316 a \\
& -329=1316 a \\
& a=-\frac{329}{1316}=-0.25 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

