$\mathrm{V}_{\mathrm{i}} \mathrm{V}_{f}$ Dat Problems is Where It's At

1. A bobsled has a constant acceleration of $4.0 \mathrm{~m} / \mathrm{s}^{2}$ starting from rest. a. After 5.00 seconds how far has it gone?

$$
\mathrm{V}_{\mathrm{i}}=
$$

$$
\mathrm{V}_{\mathrm{f}}=
$$

$$
\mathrm{d}=
$$

$$
\mathrm{a}=
$$

b. After 5.00 seconds how fast is it traveling? $t=$
c. What is the average velocity during the first 5.00 seconds?

$$
\begin{aligned}
\mathrm{V}_{\mathrm{i}} & = \\
\mathrm{V}_{\mathrm{f}} & = \\
\mathrm{d} & = \\
\mathrm{a} & = \\
\mathrm{t} & =
\end{aligned}
$$

2. A Porsche, initially traveling at a uniform velocity, accelerates at a rate of $12 \mathrm{~m} / \mathrm{s}^{2}$ for a period of 5.0 seconds. If the car traveled 200.0 m during this 5.0 s period, what was the velocity of the Porsche before it started to accelerate?

$$
\begin{gathered}
\mathrm{V}_{\mathrm{i}}= \\
\mathrm{V}_{\mathrm{f}}= \\
\mathrm{d}= \\
\mathrm{a}= \\
\mathrm{t}=
\end{gathered}
$$

3. An arrow, after being pulled back, was accelerated over a distance of 0.8 m in the bow. If its speed at the moment it left the bow was $60.0 \mathrm{~m} / \mathrm{s}$ what is the acceleration imparted by the bow? (Hint: Look at the picture below. The arrow is going from the left bow picture to the right one).
\qquad

$\mathrm{V}_{\mathrm{i}}=$
$\mathrm{V}_{\mathrm{f}}=$
$\mathrm{d}=$
$\mathrm{a}=$
$t=$

$$
\begin{gathered}
\mathrm{V}_{\mathrm{f}}= \\
\mathrm{d}= \\
\mathrm{a}= \\
\mathrm{t}=
\end{gathered}
$$

4. A train started from rest and moved with a constant acceleration. At one time, $\quad \mathrm{V}_{\mathrm{i}}=$ it was traveling 10. m/s. $50 . \mathrm{m}$ further down the track it was going $16 \mathrm{~m} / \mathrm{s}$.
a. Calculate the acceleration.
b. Find the time required to travel the 50 m mentioned.
c. Find the time required to reach $10 \mathrm{~m} / \mathrm{s}$ from rest.

$$
\begin{aligned}
\mathrm{V}_{\mathrm{i}} & = \\
\mathrm{V}_{\mathrm{f}} & = \\
\mathrm{d} & = \\
\mathrm{a} & = \\
\mathrm{t} & =
\end{aligned}
$$

d. Find the distance the train moved in going from rest to $10 \mathrm{~m} / \mathrm{s}$.
5. A 16-year-old new driver is cruising at $90 . \mathrm{m} / \mathrm{s}$ along a straight road when he sees a 60 . m / s speed limit sign. He slows down at a constant rate and 1.5 s later reaches the sign going $80 \mathrm{~m} / \mathrm{s}$.
a. What is the car's acceleration?
$\mathrm{V}_{\mathrm{i}}=$
$\mathrm{V}_{\mathrm{f}}=$
$\mathrm{d}=$
$\mathrm{a}=$
$\mathrm{t}=$

